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1 SPONSOR APPROVED STATEMENT OF PROJECT IMPACT 
 
CHAL L E NG E P RO J E CT ST A T EM EN T O F IM P A C T 
Martinos Center for Biomedical Imaging  – Goh 
 
Project Impact:  
The current state-of-art in magnetic resonance (MR) brain image segmentation, including 
those generated by the FreeSurfer (FS) software package, requires users to evaluate the 
quality of segmentation results “by eye” in order to determine whether manual edits are 
needed. This is feasible in low sample-size studies but extremely impractical with larger 
population. For this project, the candidate developed a tool which implemented machine-
learning algorithms to classify FS segmentation results into “needs editing” or “does not 
need editing” categories. The deployment of this tool mitigated dependence on manual 
inspection of MRI segmentation quality, while also providing a novel automated approach 
to segmentation quality assessment. 
 
Project Achievements: The project deliverable is a tool categorizing FS segmentations 
into “needs edit” or “does not need edit” categories. The inability to identify problematic 
segmentation volumes in a consistent and automated manner remained a significant 
barrier to widespread adoption of quantitative image analysis in the clinical setting. 
Therefore, a major milestone achieved was in driving progress in image segmentation 
state-of-the art. A secondary impact is that our tool can be leveraged to trace common 
sources of segmentation errors, which can be extrapolated to highlight the critical need 
for standardized image acquisition protocols across research centers. This would benefit 
both clinical and research settings. 
 
Project Value:  
Return on investment is quantified through labor costs. Inspecting each segmentation 
volume “by eye” is associated with approximately $11.70 in labor costs. In this information 
age, research efforts have ranged from analyzing ~400 volumes per imaging project to 
over 50,000 volumes per project. This translates to $4600 and $585,000 in labor costs, 
respectively. By contrast, this tool is capable of evaluating over 1000 segmentation 
volumes in less than 30 seconds; therefore, evaluating 50,000 volumes with our tool would 
cost ~$9.75. The savings this tool provides cannot be understated. Indirectly, ROI is 
quantified through MR image acquisition costs. Laboratories without the resources to both 
inspect and edit segmentation volumes have, in some cases, simply discarded low quality 
MRI data, choosing instead to only segment higher quality data. This is a net negative on 
ROI for that organization. Conversely, our tool would provide timesavings with respect to 
the inspection process, thereby enabling organizations to also consider segmenting low 
quality MRI data. 
 
Candidate Impact:   
The candidate developed technical skills in Python, machine learning, and MR image 
analysis. Interfacing machine-learning algorithms with MR data required developing 
programming skills, as well as technical acuity in order to understand and draw 
conclusions from the results of machine-learning experiments.  Because the candidate 
did not possess many of these technical skills prior to the project, the candidate needed 
to advocate for his needs with technical guidance and understanding the developmental 
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methodology. In order to achieve this, the candidate needed to exercise effective 
communication and decision-making capabilities 
 
 
 
 
 
_________________________________________________  ___________ 
Gordon Engineering Leadership Candidate     Date 
 
 
 
_________________________________________________  ___________ 
Industry Sponsor/Advocate       Date 
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2 ABSTRACT 

FreeSurfer is a software package developed at the Martinos Center for Biomedical 
Imaging that provides tools for neuroimaging data analysis. The goal of FreeSurfer is to 
allow users to generate computerized models of the human brain from T1-weighted MRI 
scans. FS performs cortical and subcortical segmentation, labeling, surface 
reconstruction, and other extensive analyses on brain morphometry.  
 
The focus of this project was FreeSurfer’s brain segmentation capability. In general, image 
segmentation is the task of dividing a computer image into a set of homogenous and non-
overlapping regions based on specific criteria, for example, image intensity, depth, color, 
or texture. The result is a label of images identifying each homogenous region with some 
particular classification. In the case of FreeSurfer and structural (anatomical) analyses, 
FreeSurfer segments MRI scans of the brain into gray matter (GM), white matter (WM), 
cerebrospinal fluid (CSF), and a number of macroscopically visible brain structures, e.g. 
the thalamus, caudate, putamen, hippocampus. The resulting output is a set of labels that 
can be reconstructed into 3D surfaces for brain visualization. 
 
Due to variations in image intensity and other image-related problems, the resulting 
segmentation may have errors that require manual correction. Therefore, it is crucial that 
users review each segmentation volume via visual inspection. If corrections are needed, 
the user marks edits either by erasing or filling GM or WM voxels, or by placing ‘control 
points’ which identify the marked pixel as WM. Because each segmentation volume may 
have well over 200 slices, this quality assessment (QA) process is extremely laborious 
and time consuming, such that QA is not realistic in many large sample-sized studies. 
 
The purpose of this project was therefore to develop an automated and quantitative 
method to performing FreeSurfer segmentation QA. The approach employed was using a 
machine learning approach with the algorithms available at www.scikit-learn.org. The 
strategy is to test existing machine learning algorithms and refine the features used to 
make the classification. The ultimate purpose is to mitigate the reliance on evaluating 
segmentation quality “by eye”, which is feasible in low sample-size studies, but extremely 
laborious and impractical in larger population studies. The algorithm would address the 
needs of providing some quantitative measure of quality, improving data consistency, and 
increasing throughput. 
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6 INTRODUCTION 

 
Noninvasive brain imaging technologies such as magnetic resonance imaging (MRI) have 
opened new dimensions for the analysis of brain function and anatomy. MRI has become 
invaluable to clinicians for medical diagnostics, whereas MRI allows researchers to 
perform in-depth examinations of relationships between anatomy, diseases, treatments, 
and underlying genetics. While continual improvements in MRI technology provide large 
amounts of data with increasing levels of quality, it is nevertheless the interpretation of 
details in these images that remain key in fully appreciating their informational complexity. 
 
Image segmentation has become an essential step in extracting meaningful information 
from these images. Generally speaking, image segmentation is the task of dividing a 
computer image into a set of homogenous and non-overlapping regions based on some 
criteria, for example, image intensity, depth, color, or texture. The result is a label of 
images identifying each homogenous region with some particular classification.  
 
In structural (anatomical) MRI analysis, each voxel (3D pixel) element in an MRI scan is 
assigned a tissue class (tissue classification) following the segmentation process. In the 
healthy brain, these elements can be classified as white matter (WM), gray matter (GM), 
or cerebrospinal fluid (CSF). Segmentations of higher specificity may include structures 
beneath the outermost layer (the cortex), such as the thalamus, caudate, putamen, or 
hippocampus. In an injured brain, pathological elements may be classified as tumors, 
edematous (fluid-filled), hemorrhagic (bleeding), or necrotic tissue. The resulting label 
map (a brain mask) can be reconstructed into a 3D surface for brain visualization, 
quantifying morphometry, formation of realistic tissue models, or for pre-surgical planning.  
 
For a long time, this segmentation process has depended on manual tracing by trained 
experts in neuroanatomy. However, as the size of datasets have increased, the amount 
of time required to perform these segmentations have become immensely prohibitive. 
Furthermore, manual tracing is prone to inter- and intra-user variability, such that resulting 
quantitative metrics can vary widely among experts. For these reasons, the advent of 
reliable, automatic segmentation algorithms has been critical to the evolution of the state-
of-the-art. 
 
To invoke the FS segmentation and reconstruction processing stream, a user inputs a 
single DICOM (Digital Imaging and Communications in Medicine) or NIFTI (Neuroimaging 
Informatics Technology Initiative) formatted file from a T1-weighted MRI scan. After 
several hours of running time (depending upon computer hardware), the output is a set of 
folders containing the resulting segmentation, 3D surface representations, and computed 
data on brain morphometry. 
 
Three main types of image-related problems still unfortunately exist in image 
segmentation, however. The first is noise which may exist in images, altering the intensity 
of a pixel such that its classification becomes uncertain1. The second is intensity 
inhomogeneity, where the intensity level of a tissue type varies over the extent of the 
image. The third is partial volume averaging – because images have a finite pixel size, 
individual pixel volumes may contain a mixture of tissue classes such that the intensity of 
a pixel in the image may not be consistent with any single tissue class. The combination 
of these problems, in addition to variability in brain size and shape, may lead to 
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segmentation errors that require manual user correction, depending on the severity of the 
error.  
 
For FreeSurfer, the manual correction process requires the user to first manually inspect 
each segmentation volume in a slice-by-slice fashion. If manual editing were necessary, 
the user would make corrections in the FS editor by hand. This is an incredibly time 
consuming process which can be compounded by the fact that there may be hundreds or 
thousands of volumes within a given dataset. 
 
The purpose of this project is therefore to develop an automated and quantitative method 
to FreeSurfer segmentation quality assessment, using a machine learning approach with 
the algorithms available at www.scikit-learn.org. The strategy is to test existing machine 
learning algorithms and refine the features used to make the classification. The ultimate 
purpose is to mitigate the reliance on evaluating segmentation quality “by eye”, which is 
feasible in low sample-size studies, but extremely laborious and impractical in larger 
population studies. The algorithm would address the needs of providing some quantitative 
measure of quality, improving data consistency, and increasing throughput. 
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6.1 Product Mission Statement 
Mission Statement: Create a QA tool that quantitatively assesses the quality of a 
FreeSurfer segmentation and indicating to the user a) the number of segmentations that 
are acceptable, and b) the expected % of false negative misclassifications 
Product Description 
 

• A QA tool sorts an input FreeSurfer segmentation into a 
‘needs editing’ or ‘does not need editing’ class 

Benefit Proposition 
 

• Reduce reliance on a ‘human-in-the-loop’ approach to QA 
• Minimize time spent on QA 
• Increase throughput of quality FreeSurfer segmentations 

Key Organization 
Goals 
 

• Augment benefit to users using FreeSurfer to evaluate MRIs  

Primary Market 
 

• FreeSurfer user base – FS is used worldwide (> 20,000 
downloads) 

Assumptions and 
Constraints 
 

• QA tool can be developed using existing machine learning 
algorithms 

• Effective classification requires carefully researched and 
tested algorithms and input features  

Stakeholders 
 

• FreeSurfer developers and users 

 

6.2 Project Definitions 
 
brain mask – a binary overlay containing integer values, typically “1s” inside the labeled 
region and “0s” outside the labeled region (which is typically any area outside the brain). 
The resulting brain mask is an image labeling specific tissues that can be overlaid on an 
anatomical scan such as a T1- weighted MRI scan 
 
cerebrum - the principal and most anterior part of the brain in vertebrates, located in the 
front area of the skull and comprises two hemispheres, left and right, and is separated by 
a fissure. It is responsible for the integration of complex sensory and neural functions and 
for the initiation and coordination of voluntary activity in the body 
 
contract research organizations - organizations that provide outsourced services 
(pharmaceutical, biotechnology, management, clinical research) on a contracted basis 
 
cortical – of or relating to the cerebral cortex. The cerebral cortex is the outermost layer of 
the cerebrum, and comprises gray matter, which consists of neuronal cell bodies, glial 
cells, synapses (connections between neurons), and capillaries. The cortex contrasts with 
the underlying white matter, which consists of glial cells and the white myelinated axons 
of neurons 
 
DICOM – Digital Imaging and Communications in Medicine (DICOM). It is a data standard 
that defines the formats for medical images with the quality necessary for clinical use. 
DICOM is implemented in almost every radiology, cardiology imaging, and radiotherapy 
device (X-ray, CT, MRI, ultrasound, etc.), and increasingly in devices in other medical 
domains such as ophthalmology and dentistry. A single DICOM file contains both a header 
(which stores information about the patient's name, the type of scan, image dimensions, 
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and other scanner parameters), as well as all of the image data (which can contain 
information in three dimensions). 
 
FreeSurfer – A suite of tools developed at the Martinos Center for Biomedical Imaging that 
performs neuroimaging analysis. Its segmentation function is the focus of this project. 
FreeSurfer provides anatomical analysis tools, including: representation of the cortical 
surface between white and gray matter, segmentation of white matter, skull stripping, B1 
bias field correction, nonlinear registration of the cortical surface of an individual with a 
stereotaxic atlas, labeling of regions of the cortical surface, statistical analysis of group 
morphometry differences, and labeling of subcortical brain structures and much more 
 
feature – for purposes of this proposal, ‘feature’ will be used within the context of machine 
learning terminology. A feature is an individual measurable property of a phenomenon 
being observed. It may be morphometric information (e.g. brain volumes, thicknesses, 
curvatures) or other statistics calculated from an MR image signal (e.g. intensities, 
contrasts, signal to noise ratio, contrast to noise ratio, etc.)  
 
gray matter (GM) - composes the cerebral cortex; GM consists of neuronal cell bodies, 
glial cells, synapses (connections between neurons), and capillaries 
 
HST - Division of Health Sciences & Technology at Massachusetts Institute of Technology 
(MIT) 
 
LCN – Laboratory for Computational Neuroimaging; the LCN is one of the many labs at 
the Martinos Center for Biomedical Imaging 
 
machine learning – subfield of computer science based upon pattern recognition and 
computational learning in artificial intelligence. The machine learning philosophy is to 
enable computers to act without being explicitly programmed, i.e. to learn and make 
predictions based on data 
 
manual editing – refers to the process by which a user corrects a segmentation by hand, 
i.e. using a mouse and the FreeSurfer editing tool 
 
Martinos Center for Biomedical Imaging – The parent organization of the LCN located at 
the MGH East Campust in Charlestown. The A.A. Martinos Center is a research center 
committed to the development and applied use of advanced biomedical imaging 
technologies, and to the advancement of translational research and education 
 
MGH - Massachusetts General Hospital 
 
MRI – magnetic resonance imaging, a medical imaging technique used in radiology based 
on magnetic fields and radio waves. Images are formed to investigate anatomy and 
physiology of the body. 
 
segmentation – Segmentation is the process of delineating the different tissue types within 
an MRI scan 
 
subcortical – relating to or denoting the region of the brain below the cortex 
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T1-weighted – one of the basic pulse sequences in MRI that provide gray matter/white 
matter contrast 
 
volume – a ‘volume’ (3D) refers to a complete series of MRI slices (2D) 
 
voxel – a 3D pixel 
 

6.3 Company/industry background 
 
The project will be completed in affiliation with the Laboratory for Computational 
Neuroimaging (LCN) of the Athinoula A. Martinos Center for Biomedical Imaging, located 
at Massachusetts General Hospital (MGH). The A.A. Martinos Center is a research center 
committed to the development and applied use of advanced biomedical imaging 
technologies, and to the advancement of translational research and education. The Center 
is comprised of many laboratories and programs, one of which is the Laboratory for 
Computational Neuroimaging. The goals of the LCN are to build computational tools and 
algorithms that optimize neuroimaging data analysis within the domains of structural, 
functional, and diffusion magnetic resonance imaging. The LCN spends substantial 
resources investigating the labeling of fiber pathways and subcortical structures, and on 
the development of MR scanner pulse sequences and image reconstruction methods that 
enhance image tissue contrast, reduce motion artifacts, and improve the reliability of 
scans within and across individuals. 

 
The A.A. Martinos Center began in 1999 when Thanassis and Marina Martinos of Athens, 
Greece, presented a gift of $20 million to the Harvard-Massachusetts Institute of 
Technology (MIT) Division of Health Sciences & Technology (HST) to honor the memory 
of their daughter, Athinoula. The purpose of the gift was to establish a biomedical imaging 
center dedicated to research and the medical application of new technologies. HST then 
invited MGH to participate in founding the Athinoula A. Martinos Center for Biomedical 
Imaging, thereby forming a partnership. This formed a synergistic alliance uniting the 
clinical and imaging expertise of the MGH Nuclear Magnetic Resonance (NMR) Center 
with the engineering and neuroscience expertise of HST.  The A.A. Martinos Center 
launched in 2000 under the directorship of Bruce R. Rosen, MD, PhD, with a faculty of 
approximately forty investigators and over $23 million in existing biomedical imaging 
equipment. The Center is located on the MGH research campus in the Charlestown Navy 
Yard, with a satellite facility on the MIT campus. 

 

 
 
 

7 MARKET AND IMPACT ASSESSMENT 
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7.1 External Market 
 
The external market was considered all organizations beyond the Martinos Center, for 
example FreeSurfer users, researchers, clinicians, developers, or contract research 
organizations who may all utilize automatic segmentation tools. Segmentation tools are 
valuable not only for exploring brain anatomy, but also for formulating novel therapeutic 
treatment strategies. Taking Alzheimer’s disease (AD) as an example, AD has long been 
thought to be a disease of the gray matter due to severe neurodegeneration and atrophy 
of many gray matter structures. Consequently, volumetric studies (by means of MRI 
segmentation) on GM structures such as the hippocampus, on one hand, have provided 
high diagnostic value. On the other hand, these same types of volumetric studies have 
also indicated that white matter abnormalities are important components of the disease. 
Thus, segmentation can ultimately benefit patients by first shedding knowledge on how 
clinicians can optimize therapy regimens. 
 
The state-of-the-art in brain segmentation software consisted of very few tools with similar 
capabilities to that of FreeSurfer. In the research space, some of the more popular tools 
were FreeSurfer, FSL, and BrainVoyager. FreeSurfer, however, was capable of 
performing both cortical and subcortical segmentation, whereas FSL was limited to GM, 
WM, and CSF segmentation. BrainVoyager performed only cortical segmentation and cost 
€5300 ($5770USD) per license, whereas FreeSurfer was freely available. Thus, 
FreeSurfer possessed several advantages over its competition. 
 
In the commercial space, there were several segmentation tools available for segmenting 
CT datasets, but disappointingly few for that of MRI. Based on market research, the only 
notable automatic segmentation software available for MRI was Neuroreader, which 
segments only the hippocampus, and has only recently received FDA approval. The 
paucity of clinically approved segmentation software is in part a result of the overall 
reluctance of clinicians to employ quantitative approaches to image analysis. This is 
largely due to the lack of standardized methods in a) image acquisition, b) information 
extraction from these images, and c) in correlating quantitative metrics with internationally 
recognized criteria. 
 
These circumstances provided FreeSurfer with a unique opportunity to expand its 
functionality. For developers, the creation of an automated, quantitative, and dependable 
means to perform FreeSurfer quality assessment (QA) can aid the identification of 
common sources of segmentation errors. If these sources were found to result from certain 
image acquisition parameters, it would highlight the case that standardizing image 
acquisition protocols is critical for revolutionizing medical image analysis. This would bring 
benefit to both clinical and research settings. 
 
For users, this project addressed the time-consuming methodology of visual slice-by-slice 
inspection. This process is illustrated by the sample decision tree below: 
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Figure 8.1. Decision tree for the ‘visual inspection’ approach 

 
For each slice in the segmentation volume (see Fig. 2), a user needed to determine 
whether the segmented result met some criteria of acceptability. This decision depended 
upon on the users knowledge of neuroanatomy and judgement in whether an error could 
be safely ignored (a study interested only in white matter, for example, might not need 
accurate segmentation of gray matter). 
 
This approach was problematic for several reasons. In time costs, performing visual 
inspection ranged from 20 seconds to a few minutes for each slice. A given segmentation 
volume may contain well over 200 slices, translating into a minimum time cost of 33 
minutes per volume. Because many neuroimaging studies now contain cohort sizes 
numbering in the hundreds and thousands, it was clear that manual inspection was not a 
viable approach to QA  2 3 4 5. 
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Figure 8.2. A sample slice as seen by a user during FS QA. A segmentation volume typically 
contains well over 200 slices. 

 
Time costs also translated into labor costs. Based on salary averages from two separate 
sources, the national annual salary estimates of a Staff Research Associate I (the position 
most likely to perform segmentation QA) were $46,774 and $48,384 respectively67. Taking 
the average of the two ($47,579 /yr), this equated to an hourly rate of $22.87, or a cost of 
$12.58 per segmentation volume. Large neuroimaging studies utilizing ~400 volumes per 
imaging project to over 50,000 volumes per project would thus consume $4,600 to 
$585,000 in labor costs, respectively. By contrast, this tool is capable of evaluating roughly 
1000 segmentation volumes in less than 30 seconds, or 66,000 volumes in 30 minutes. 
The cost savings this tool provides cannot be understated. See Table 1 for a summary of 
comparative costs. 
 
A final issue with the visual inspection methodology was its susceptibility to intra- and 
inter-user variability. Based on user feedback, it was hardest to decide whether edits were 
needed when the segmentation was almost entirely accurate. Small errors required an 
attentive and experienced eye to recognize them. This was thus a highly qualitative means 
of QA that depended on the user’s experience and personal criteria of acceptability. 
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 Visual Inspection QA Tool 
Time cost per volume (s) 1980 s 0.03 s 
Dollar cost per volume ($) $12.58 $1.91e-4 

Number volumes assessed 
per 33 minutes (1980 

seconds) 

1 65,340 

 
Table 8.1. Summary of comparative costs. Visual inspection vs QA tool 

 

7.2 Internal Market 
 
The internal market was considered FreeSurfer developers at the Martinos Center. The 
development of a QA tool could provide future benefit to FreeSurfer development; a 
central theme to the project was identify specific causes of segmentation errors, which 
can ultimately aid developers in fine-tuning the segmentation algorithms. These findings 
could then be applied to a future tool that directly searches for and fixes segmentation 
errors, eliminating altogether the need for manual user input in the segmentation 
correction process. 

7.3 Customer and Customer Needs Assessment 
 
The customer needs were assessed through an in-depth examination of the decision tree 
presented in Figure 8.1. 
 
The first decision point (Is there a segmentation error?) depended upon the user’s 
expertise in neuroanatomy. A user would inspect the segmentation in the FreeSurfer 
viewing and editing tool called Tkmedit, where the gray matter/cerebrospinofluid (CSF) 
and white matter/gray matter boundaries were delineated by the red and yellow lines, 
respectively (refer back to Figure 8.2). 
 
The first decision point would thus be a question of accuracy, and, by and large, a binary 
decision of “yes, needs edit” or “no, does not need edit” response. However, an issue of 
‘ground truth’ is presented in that it is impossible to know with 100% confidence the exact 
boundaries between the respective tissues without histological examination. The 
important point is that in regions where the user was not confident of its accuracy, more 
time would be required to determine whether editing was needed. 
 
If the user decided that an error occurred, then the next decision point was reached, which 
is concerned with whether the error is negligible (i.e. can safely ignore the problem). A 
negligible error is one that would likely yield a negligible change in the computed metrics 
(e.g. volume, curvature, or thickness). This again was reliant on qualitative observation, 
and the user’s past experience with segmentation correction.  
This decision point raised yet another issue to consider: a segmentation error appearing 
significant at the slice level (‘microscale’) may in actuality be negligible when considered 
at the volume level (macroscale). Suppose an MRI segmentation containing errors in 
slices 1, 27, and 123 in a 256-slice volume. The user may or may not conclude that errors 
occuring only 3 slices out of 256 are negligible. In either case, this conclusion could not 
be reached until after the user inspected every slice. This scenario highlights two major 
problems: 
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1) The decision is qualitative 
2) The process is inefficient in time costs 
 
In larger population studies, the issues with manual inspection are magnified: suppose in 
a cohort of 100 subjects, 10% of the segmentation volumes were determined to need 
editing. The user may decide that the remaining 90 “good” volumes (90% of 100) are 
sufficient to perform the analysis, and discards the 10% that needed to be edited. In this 
scenario, the user could not reach that conclusion without first visually inspecting all 100 
volumes to determine the 90%/10% breakdown. 
 
In summary, the customers’ needs were a QA tool which: 
1. Provided a binary “edit”/”do not edit” response 
2. In the case of “edit”, quantified the degree of error to guide the user in determining 
whether the error is negligible 

7.4 Economic Impact and Return on Investment 
 
8.4.1 Estimated Impact 
The main groups that benefit from this project are clinicians, researchers, and FreeSurfer 
users. For FS users, the estimated impacts are: 
1. Automation of quality assessment 
2. Reduced reliance on ‘human-in-the-loop’ when performing QA 
3. Reduced inter- and intra-user variability in the quality assessment process 
 
The direct benefit to users is that they no longer need to spend significant time visually 
inspecting the segmentation results. This would reduce analyses times, and can 
potentially drive down research costs by a) reducing the number of research assistants 
needed, and b) reducing (paid) time spent on recruiting and training new lab members. 
 
In certain cases, labs without the resource to edit segmentation volumes will simply 
discard data rather than make corrections. For example, the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI), funded with $67 million in 2004 and another $67 million in 
2011, discards approximately 15% of FS-segmented data as a result of poor quality. No 
attempt is made at editing these volumes due to the sheer amount of data. Consequently, 
there is a cost associated with discarding bad data in terms of money spent on data 
acquisition. An automated QC tool would therefore allow such organizations to edit the 
data more quickly, thereby maximizing their return on investment. 
 
Clinicians and researchers will also receive benefit due to the reasons discussed in 
Section 8.1. 
 
 
8.4.2 Return on Investment 
Return on investment (ROI) to the organization was not quantified in dollar value because 
FreeSurfer is freely available and not in direct competition with commercial software. ROI 
was instead expressed in terms of added potential for FreeSurfer to become FDA-
approved (Food and Drug Administration). FDA approval would enable the Martinos 
Center to bill insurance companies when FreeSurfer is used in the clinical setting. This 
would bring additional revenue to the organization. Receiving FDA approval includes an 
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evaluation process that would examine a) the technology behind FreeSurfer, and b) the 
process used to build the technology. Both elements would examine FreeSurfer 
segmentation reliability and accuracy rates. User-reported accuracy rates (based on visual 
QA), even if low, would provide a weaker argument for reliability compared to an objective 
and consistent means of performing QA by way of this tool. Therefore, there is significant 
potential for ROI due to the creation of this tool. 
 
External organizations also have potential to receive ROI from use of this tool. was 
quantified in labor and data acquisition costs. As stated in the previous section, the 
national average salary for a Staff Research Associate I was estimated to be $46,774 and 
$48,384 from two separate sources. Taking the average of the two ($47,579 /yr), this 
equates to an hourly rate of $22.87, or a cost of $12.58 per segmentation volume based 
on a time estimate of 33 minutes per volume. There are no reported numbers on total 
labor hours spent annually evaluating segmentation volumes. However, Table 8.4 below 
contains data on major brain imaging projects that utilize FreeSurfer, thereby highlighting 
the scale at which many neuroimaging studies take place. The QA tool developed here 
would benefit organizations worldwide by reducing labor costs. 
 

Project Number	of	Cases
Alzheimer's	Disease	Neuroimaging	Initiative	(ADNI) >5000
Framingham	Heart	Study	(FHS) >5000
Human	Connectome	Project	(HCP) 1200
Superstruct	Project	 1500
Open	Access	Series	of	Imaging	Studies	(OASIS) 416
Enhanced	NeuroImaging	Genetics	Meta	Analysis	(ENIGMA) >50000
UK	Bio	Bank ~100000
Rotterdamn	Study 12000

Major	Brain	Imaging	Projects	that	use	FreeSurfer

 
Table 8.4. Cohort sizes of major neuroimaging projects 

 
ROI to external organizations was also quantified in terms of data acquisition costs. In 
many cases, organizations without the resources to review and edit segmentation volumes 
have discarded low quality MRI scans rather than attempting to segment and QA these 
volumes, preferring instead to devote attention only to higher quality scans. For example, 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI), funded with $67 million in 2004 
and another $67 million in 2011, discards approximately 15% of data due to poor quality. 
For context, a typical research scan costs approximately $500-$600 per hour ($1500 and 
over for clinical scans), and a typical scan without contrast agent requires 35 minutes to 
complete8. This translate to costs between $292 and $350 per scan that is discarded. This 
QA tool therefore provides savings in terms of enabling organizations to leverage all data 
since the time needed to QA segmentation data is significantly reduced. Furthermore, 
organizations that overcollect data in order to accommodate turnover rates will no longer 
need to do so.  

7.5 Market Challenges and Risks 
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The market risks were anticipated to be minimal. Segmentation QA is not an area 
developers often invest time on, therefore there was low risk that another organization 
would be the first produce an automated QA tool. In the research space, free segmentation 
software is also often preferred over commercial tools in order to minimize research costs. 
 

8 TECHNOLOGY DESCRIPTION 

8.1 Overview of the Technical Challenge 
 
This project sought to improve the status quo of assessing FreeSurfer segmentation 
volumes. Visual inspection of segmentations had been standard practice; for reasons 
described in above sections, this approach suffered from many problems. Consequently, 
the aim of this project was to create a tool which could perform FreeSurfer segmentation 
quality assessment automatically. The two most important pieces of information we 
wished to present to users with this tool were a) the number of segmentations that passed 
inspection, and b) of those that passed, the proportion of those that were incorrectly 
classified (false negative). 
 
The project incorporated cross-disciplinary knowledge in machine learning, MRI 
segmentation analysis, and computer science. Interfacing MRI segmentation data with 
machine learning algorithms required computer programming in Python; MATLAB and 
shell scripting were needed on occasion.  
 
Prior to the project, the candidate’s programming experience resided primarily with 
MATLAB, so becoming familiar with the Python language was a substantial technical 
challenge. 
 
Because implementing machine learning classifiers was the central basis to developing 
this tool, it was critical for the candidate to obtain a thorough understanding of relevant 
topics. 
 
An additional significant challenge was in determining which types of predictions could be 
made with the most accuracy. Early experimental runs demonstrated that binary 
classifications (“edit” or “don’t edit”) could not be achieved with desirable accuracy using 
the initial feature set. Thus, other “forks” needed to be explored. These include: 

a) Experimenting with other types of predictions 
b) Experimenting with different feature sets 
c) Experimenting with different machine-learning algorithms 

 
Every experimental run required high amounts of technical acuity in order to understand 
implications of that experiment, to draw conclusions, and to decide which next steps would 
most likely to lead to success. Determination of which methods or steps to explore also 
drew from ‘soft’ skills such as creativity and intuition. 
 

8.2 Product Specifications 
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Primary Function 1) Provide “need edit” or “does not need 
edit” output for each segmentation 

2) Output false negative discovery rate 
Secondary Goals Guide user to focus on problematic 

regions or voxels of the segmentation 
Software Requirements Python 

Anaconda 
Software Input Information extracted from FreeSurfer 

segmentation results. These constitute the 
feature set upon which the machine 
learning classifier was trained on 

Software Output a) Number of segmentations that can 
be ignored (passed inspection) 

b) False negative discovery rate (of 
those rated negative, how many of 
these can be expected to be false 
negatives) 

 

8.3 Scientific Principles Applied 
 
The primary scientific principles applied were: 

1) MRI segmentation 
2) Machine learning and statistics 
3) Computer science 

 
The following section provides background information on each of these principles and 
explains how they pertain to the project. 
 

1. MRI segmentation 
 
In brain MRI analysis, image segmentation is an essential step to extracting 
meaningful information. It is used for visualizing anatomical structures, analyzing 
brain changes, delineating pathological regions, and for surgical planning. 
 
Generally speaking, image segmentation is the task of dividing a computer image 
into a set of homogenous and non-overlapping regions based on some criteria, for 
example, image intensity, depth, color, or texture. The result is a label of images 
identifying each homogenous region with some particular classification.  
 
In structural (anatomical) MRI analysis, each voxel (3D pixel) element in an MRI 
scan is assigned a tissue class (tissue classification) following the segmentation 
process. In the healthy brain, these elements can be classified as white matter 
(WM), gray matter (GM), or cerebrospinal fluid (CSF). Segmentations of higher 
specificity may include structures beneath the outermost layer (the cortex), such 
as the thalamus, caudate, putamen, or hippocampus. In an injured brain, 
pathological elements may be classified as tumors, edematous (fluid-filled), 
hemorrhagic (bleeding), or necrotic tissue. The resulting label map (a brain mask) 
can be reconstructed into a 3D surface for brain visualization, quantifying 
morphometry, formation of realistic tissue models, or for pre-surgical planning.  



21 
 

 
For a long time, this segmentation process has depended on manual tracing by 
trained experts in neuroanatomy. However, as the size of datasets have increased, 
the amount of time required to perform these segmentations have become 
immensely prohibitive. Furthermore, manual tracing is prone to inter- and intra-
user variability, such that resulting quantitative metrics can vary widely among 
experts. For these reasons, the advent of reliable, automatic segmentation 
algorithms has been critical to the evolution of the state-of-the-art. 
 
FreeSurfer (FS) is a widely used automatic segmentation software application 
developed that provides tools for brain MRI analysis, specifically cortical and 
subcortical segmentation, labeling, surface reconstruction, and statistical analyses 
on brain morphometry. To invoke the FS segmentation and reconstruction 
processing stream, a user inputs a single DICOM (Digital Imaging and 
Communications in Medicine) or NIFTI (Neuroimaging Informatics Technology 
Initiative) formatted file from a T1-weighted MRI scan. After several hours of 
running time (depending upon computer hardware), the output is a set of folders 
containing the resulting segmentation, 3D surface representations, and computed 
data on brain morphometry. 
 
Three main types of image-related problems still unfortunately exist in image 
segmentation, however. The first is noise which may exist in images, altering the 
intensity of a pixel such that its classification becomes uncertain. The second is 
intensity inhomogeneity, where the intensity level of a tissue type varies over the 
extent of the image. The third is partial volume averaging – because images have 
a finite pixel size, individual pixel volumes may contain a mixture of tissue classes 
such that the intensity of a pixel in the image may not be consistent with any single 
tissue class. The combination of these problems, in addition to variability in brain 
size and shape, may lead to segmentation errors that require manual user 
correction, depending on the severity of the error.  
 
For FreeSurfer, the manual correction process requires the user to first manually 
inspect each segmentation volume in a slice-by-slice fashion. If manual editing 
were necessary, the user would make corrections in the FS editor by hand. This is 
an incredibly time consuming process which can be compounded by the fact that 
there may be hundreds or thousands of volumes within a given dataset 
 

2. Machine learning and statistics 
Machine learning (ML) is a subfield of computer science that deals with 
constructing algorithms that learn from some properties (features) of a dataset and 
apply these properties to make predictions on new, unseen data. ML tasks can be 
generalized into supervised learning and unsupervised learning categories.  
 
A supervised machine learning problem is one in which training data is provided. 
The training data set consists of training examples, where each example is a pair 
of an input object and a desired output “target” value. Stated another way, 
supervised learning algorithms infer a mapping between features and labels from 
labeled training data. Supervised learning problems can further be categorized into 
classification or regression problems. In a classification problem, each sample 
belongs to two or more classes, and the objective is to predict the class of 
unlabeled data based on existing labeled data. Thus, classification problems are 
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a discrete (as opposed to continuous) form of supervised learning, where the 
number of output categories are finite. Conversely, a supervised learning problem 
is a regression problem if the desired output value consists of one or more 
continuous variables.  
 
In unsupervised learning, the training data consists of input objects without 
corresponding target values. The objective is to infer a function that describes 
some hidden structure to the unlabeled data. The problems here can be similar to 
clustering, where the goal may be to discover groups of similar examples within 
the data, or similar to density estimation, where the goal may be to determine the 
distribution of data within input space. 
 

 
Figure 9.3.1. Breakdown of machine learning categories 

 
 
This project consisted of a classification problem. Therefore, only supervised 
learning algorithms were employed.  

 
Feature selection is a machine learning practice that was employed to select out 
the most useful features in making the predictions. The principal idea behind how 
feature selectors work is also grounded in statistics: feature selection algorithms 
analyze the distribution of a given metric, compare the distribution to the 
distributions across all other metrics, then computes the probability that each 
metric was drawn from the same distribution. 
 
Other statistical concepts applied include data normalization, receiver operating 
characteristics (ROC) curves, and bootstrapping. Understanding normalization 
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methods was crucial for properly accounting for the heterogeneity of a given metric 
across subjects.  
 
The application of data normalization and feature selection are described in greater 
detail in the next section. 
 
A number of critical data pre-processing steps were also performed; these are 
described in section 10.1. 

 
3. Computer science 

 
This project was written in Python. The programming aspects include interfacing 
segmentation data with machine learning algorithms, implementing the algorithms 
and relevant functions, and outputting the results of machine-learning 
experiments. As with learning any programming language, the primary challenges 
were becoming familiar with the language’s syntax, keywords, data structures, and 
functions. It was also important to be cognizant of how these properties differ from 
other languages that the candidate had experience with. 

9 TECHNOLOGY APPROACH AND RESULTS 

 

9.1 Development Approach and Methods 
 
The developmental approach of the project was projected to include several phases or 
layers. The first layer was to first test machine learning algorithms available at 
http://www.scikit-learn.org/stable, using the standard FreeSurfer segmentation output 
metrics as the input features. These inputs are the components of the input matrix used 
to make the classification. An example of these metrics is shown in Table 10.1.1. 
 
The second layer was to devise new metrics that are estimated to be more effective 
features compared to those used in the first layer; the project team had anticipated that 
the standard FreeSurfer metrics would not contain the types of information needed to 
accurately make the desired classifications. Nonetheless, in-depth analyses of the 
standard output metrics were necessary in order to fully understand how the algorithms 
behave. 
 
The third layer was to devise a component of the quality assessment tool that is capable 
of guiding users to the specific problematic locations within the segmentation volume. This 
also constituted a ‘stretch goal’ if there was remaining time available. Due to time 
constraints, the third layer’s functionality was not pursued. This section will therefore focus 
on developmental methodologies of the first two layers. 
 
The flowchart below illustrates the project’s developmental components in the big picture. 
All machine learning processes, which include data pre-processing and validation 
techniques, were incorporated into a robust Python script. 
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The blue boxes are aspects that will be addressed here. The remaining boxes will be 
discussed in sections 10.2 and 10.3. 
 
Data and input vector 
As described in Section 9.3, the inputs to supervised learning algorithms are input vectors 
which consist of input features and output target values. The output metrics of FreeSurfer 
segmentations from 3695 subjects were formatted into a data table where each row 
comprised a different subject, and each column comprised a metric extracted from the 
segmentation volume of that subject. In machine learning terminology, each column was 
a feature to be used for training, and the aggregate of all columns constituted a feature 
set. The target values were binarized values (0s and 1s) stored in a separate data table. 
The semantic definition of a ‘0’ or ‘1’ label varied depending on the experiment that was 
performed. The 3695 subjects constituted data from the Framingham Heart Study9 and 
the MIT data set. Table 10.1.1 displays an input data tables for five subjects and four 
sample features. Table 10.1.2 displays the corresponding target values. 
  
  

Left-Lateral-Ventricle Left-Inf-Lat-Vent Left-Cerebellum-White-Matter Left-Cerebellum-Cortex
B0 11420 334 12226 45489
B1 9173 366 14669 51042
B2 2089 751 14456 59771
B3 27703 506 13610 61274
B4 12727 568 15316 55417
B5 8664 155 12763 51243  

 
Table 10.1.1. Sample input data table for five subjects. Each row corresponds to the segmentation result of a 
subject, and each column is the metric extracted from the segmentation result. In ML language, each column 
constitutes a feature. 
 
 

B0 0
B1 0
B2 1
B3 0
B4 1
B5 1  

 
Table 10.1.2. Sample binarized data table for five subjects. Each row corresponds to the same subjects as in 
the rows of Table 10.1.1. The second column outputs a ‘1’ or ‘0’ target value based on some criteria, for 
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example whether the subject received any edits. A ‘1’ or ‘0’ would constitute ‘received edits’ or ‘did not receive 
edits’ classes, respectively. 
 
Train data and test data 
For every experiment performed, the data set was divided into training and test data sets. 
The fundamental goal of machine learning is to generalize the learned model beyond 
training data. in order to achieve this, one must be able to project the quality of the model’s 
pattern generalization for data it was not trained on. However, because future samples 
have unknown target values, it would not be possible to extrapolate the model’s accuracy 
from future data. Thus, a common strategy is to use existing labeled data as a proxy for 
future data. To ensure fairness, these tests must be carried out on data samples that are 
statistically independent from those used during training – evaluating the model with the 
same training data is not useful because it would reward models that can “remember” the 
training data (a consequence known as overfitting), as opposed to generalizing from it. 
 
Data preprocessing 
Once the data was split into training and test data sets, the following data preprocessing 
steps were performed: 

1) Data normalization 
2) Data balancing 
3) Feature selection 

 
Z-score normalization was used in all cases to scale values across all input features. Data 
balancing refers to the task of ensuring that the number of positive and negative classes 
in the training set are equal. This was performed to ensure that the algorithm would not 
be biased by the weight of one class over the other. 
 
Finally, feature selection was performed prior to training. Feature selection is the process 
of selecting a subset of the most relevant features for constructing the learned model. This 
removes features with little impact on making the prediction, allowing for a simpler model, 
and reducing the possibility of overfitting data. The learned production model would also 
incur less computational costs. 
 
Jackknifing and cross-validation are additional preprocessing steps involved, but are more 
closely related to methodology validation, and so are discussed in section 10.2. 
 
Learning 
The learning phase involves passing of the pre-processed input features into an algorithm 
where training and testing are executed. The machine learning libraries used for this 
project were imported from www.scikit-learn.org/stable, and are written in the Python 
programming language. The support vector machine (SVM) classifier algorithm was 
rigorously tested. The input data tables were interfaced with SVM through Python scripts, 
and the results were written out to a text file for further analyses via bar graphs, line 
graphs, and ROC curves (ROC is discussed in section 10.2).  
 
Support Vector Machines are based upon the concept of decision planes that define 
decision boundaries. A decision plane is a plane that separates objects that contain 
different class memberships. In the illustration below, each point is an object (or sample) 
belonging to either the RED or BLUE class. The separating line is known as a hyperplane 
and defines the boundary where any object to the right of the hyperplane is classified as 
BLUE, and any object to the left is classified as RED. SVM calculates a score for each 
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sample, and sets a threshold value for the hyperplane. Any object with a score below or 
above that threshold is classified accordingly. 
 

 
One parameter of SVM that needed to be tuned was the C parameter, which determines 
the distance between the hyperplane and each sample. This distance is known as the 
lowest minimum margin. Large values of C will choose a smaller-margin hyperplane, if 
that hyperplane achieves the best performance with correctly classifying the training 
samples. Conversely, smaller values of C will choose a larger-margin hyperplane, even if 
that hyperplane misclassifies more training samples. In other words, smaller values of C, 
can result in more misclassified samples even if the training samples are perfectly linearly 
separable. 
 
In the ideal scenario, one wants a hyperplane with the largest minimum margin, and a 
hyperplane that correctly classifies as many samples as possible. In reality, both of these 
conditions are not always possible, and so choosing the optimal C value greatly depends 
on the distribution of the data set. 
 
The illustrations below further explain the influence of C: 
 

 
low C      large C 

 
In the figures above, each point is one of 24 samples plotted based on its features X1 and 
X2. The red (M=12) and blue dots (N=12) represent the type of classification (RED or 
BLUE). In the figure on the left, a low C is chosen, resulting in a large minimum margin 
(purple lines) but with one outlier (red sample) misclassified. In the figure on the right, a 
large C is chosen. The outlier is not neglected, but results in a smaller minimum margin. 
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Choosing the optimal C depends on the distribution of future data: 
 

 
Scenario A. low C      large C    

 
 
In scenario A, a low C achieves the best performance, even though it initially resulted in 
one misclassified sample. 
 
On the other hand, the distribution of future data can also be: 
 

Scenario B. low C       large C    
 
 
In this scenario, the larger C achieves the best performance, despite initially producing a 
smaller minimum margin. 
 
In the context of this project, this parameter was tuned by looping over a large range of C 
values, and selecting the value that produced the best results. 
 
The ‘standard’ experiment consisted of using the default metrics generated automatically 
by FreeSurfer (note: the definitions of aparc and aseg are given in section 9.3. A sample 
input feature table was provided in Table X): 

a) aseg volume 
b) aparc volume 



28 
 

c) aparc thickness 
d) aseg mean of white matter pixel intensity 
e) aseg standard deviation of white matter pixel intensity 

 
In this vanilla experiment, the target labels were binarized from a post-edit QA data table, 
and assigned a value based on whether the segmentation volume received any edits at 
all. The values provided in the QA data table include, for every subject: 

a) count - number of control points 
b) nWMErase - number of WM voxels erased 
c) nWMFill - number of WM voxels filled 
d) nBMErase - number of brain mask voxels erased 
e) nBMClone - number of brain mask voxels filled 
f) nASegChanges - number of ASeg voxels changed 
g) lhholes - number of defects in the left hemisphere 
h) rhholes - number of defects in the right hemisphere 
i) totholes - total number of defects 
j) MaskVolToETIV - ratio of mask volume to estimated intracranial volume 
k) WMmean - mean intensity in the WM 
l) WMstd- standard deviation of intensity in the WM 
m) WMmin - min intensity in WM 
n) WMmax- max intensity in the WM 
o) WMrange- range of intensity in the WM (max-min) 
p) WMsnr - mean intensity in the WM/ WMstd 

 
The vanilla experiment summed the values of a-e; any subject with a numeric total greater 
than 0 received a ‘1’ label. An example of the binarized data table was provided in Table 
Y.  
 
Many subsequent experiments were performed, and involve experiments varying the input 
features as well as experiments varying the rules that define a ‘0’ or ‘1’ target label 
(relabeling). A number of different input features were created (second layer of the project 
as described) and tested, for example, the gray/white image contrast underlying each 
segmented structure. By selecting specific values in the QA data table to include or 
exclude (a-p), a number of different rules defining a ‘0’ or ‘1’ class were applied, and 
constituted the ‘relabeling’ experiments. 
 

9.2  Testing, Verification and Validation Implementation 
 
Verification and validation of the machine learning model and results were performed in 
lock-step with algorithm training and testing. Verifying the reliability of predictions is most 
concerned with capturing the heterogeneity and variability of real-world unseen data, as 
well as capturing the variation in the algorithm’s predictions. In many scenarios, it is not 
feasible to collect and re-collect new data to capture this variability. Therefore, two key 
techniques were applied in order to fully leverage the dataset available: a) jacknifing and 
b) cross-validation. 
 
Jackknifing was a method applied during the selection of training data to every 
experimental run10. Given a dataset of N samples, jackknifing selects an observation at 
random and adds it to ‘jackknife’ training set. This process is repeated without 
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replacement, i.e. selected samples are not returned to the original dataset during each 
sampling cycle, and so the jackknifed dataset cannot contain the same samples multiple 
times. All remaining data becomes test data applied during the test phase. For this project, 
each experiment was repeated across 70 permutations of jackknifed data. 
 
Once a jackknifed dataset was created, the dataset was then passed through a cross-
validation algorithm to optimize C parameter. The algorithm was trained on a range of C 
values (0 through 5 in increments of 1), with the highest performing C value selected. To 
validate the selection of the C value, cross validation was applied to each experimental 
run using a different C value.  
 
During cross validation, the entire training set was divided into k subsets, with each k 
subset constituting a ‘fold’. K-1 subsets are used as training data during each fold. Figure 
10.2 below illustrates this process for a 5-fold cross validation step, which was used for 
this project. 
 

 
 
Figure 10.2.1 5-fold cross validation. In 5-fold cross validation, the entire data set is subdivided 
into 5 sets, with one set held as the test data (blue rectangles). The remaining data is applied as 
training data. This experiment is repeated k times, and the average of the results are used. 
 
This project also drew from concepts in signal detection theory, namely receiver operating 
characteristics (ROC) graphs. ROC graphs are commonly used in medical decision-
making and have been increasingly used in machine learning and data mining research.  
 
Results to the algorithm’s predictions were evaluated through accuracy rates, false 
positive rates (FPR), false negative rates (FNR), false positive discovery rates (FPDR), 
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and false negative discovery rates (FNDR). The goal was to maximize accuracy while 
minimizing all other rates. FPR and FNR are defined in the truth table below (Figure 
10.2.2). The rates are defined by the following formulas: 
 
Accuracy rate: # (True Positive + True Negative) / # Positive + Negative 
 
FPR: # False Positive / (# False Positive + # True Negative) 
 
FNR: # False Negative / (# True Positive + # False Negative) 
 
FPDR: # False Positive / # True Positive 
 
FNDR: # False Negative  / #True Negative 

 
 

Figure 10.2.2 Truth table 
 
In binary classification problems, FPR and FNR are dependent upon the discrimination 
threshold imposed by the algorithm to categorize its predictions. More specifically, 
scoring classifiers do not return prediction values (e.g. 1s or 0s), but rather the 
probabilities that a sample belongs to a class. These probabilities fall between 0 and 1, 
and the discrimination threshold is the cutoff imposed on the predicted probabilities for 
assigning samples to each class. Consequently, FPR and FNR are affected by this 
discrimination threshold. However, false positives and false negatives do not have equal 
consequences. A false positive results in an acceptable segmentation misclassified as 
“needs edit”. This is less consequential than a false negative, which is an unacceptable 
segmentation result misclassified as “does not need edit”. Therefore, the effects of 
different discrimination thresholds were also examined using a signal analysis technique 
called receiver-operating characteristics (ROC). ROC graphs illustrate the performance of 
a binary classifier as the discrimination threshold is varied. 
 
ROC graphs are two-dimensional graphs where TPR is plotted on the Y-axis and FPR is 
plotted on the X-axis11. Figure 10.2.2 below describes the properties of ROC space. Each 
point on the graph represents a classifier, labeled A through D, with an additional classifier 
labeled as ‘Perfect Classification’. 
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The lower left point (0,0) represents a threshold in which positive classifications are never 
issued. Thus, no false positives are incurred, all possible true negatives are detected, but 
no true positives are gained. The upper right point (1,1) represents the opposite strategy. 
 
The upper left point (0,1) represents a perfect classifier – all possible positives are 
detected without incurring any false positives. An FPR of 0 also means that all possible 
true negatives are detected. 

 
 

Figure 10.2.3. ROC graph showing five binary classifiers 
 
In the above graph, the dotted red line y = x represents classifiers that are randomly 
guessing a class. A classifier randomly guessing the positive class half the time can be 
expected to yield half the positives and half the negatives correct. This is represented at 
the point (0.5, 05). As the frequency of positive predictions increases, that classifiers 
likelihood of incurring true positives and false positives increases proportionally. Point C 
represents a classifier that guesses the positive class about 78% of the time, thus also 
incurring false positives about 78% of the time (0.78, 0.78). In order to deviate away from 
the diagonal line, classifiers must be able to exploit information in the training data. 
Suppose that Point B is located at (0.3, 0.7) and Point D is located at (0.7, 0.3).  represents 
a classifier that performs far below 
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For any classifier, an ROC curve can be traced by varying the discrimination threshold 
from -∞ to ∞. If the classifier output for a given sample is above the threshold, the classifier 
outputs a Y, else an N. An example of this curve is shown below in Figure 10.2.3. 
 
 
 
 
 
 
 

 
 

Figure 10.2.4. ROC curve from an experimental run using subcortical volumes as input features. 
 
Note that ROC curves generated from a finite set of samples are step functions, but 
approach true curves as the number of samples approaches infinity. 
 
To quantify performance, the area under the curve (AUC) is computed and applied as a 
scalar value to represent the classifier’s performance. In a unit square, the maximum area 
is 1. Randomly guessing classifiers produce the diagonal line y = x, and so have areas of 
0.5. Thus, a useful classifier should have an AUC as close to 1 but no less than 0.5. In the 
above figure, an AUC of 0.57 indicates mediocre performance. 
 
To summarize jackknifing, cross validation, and ROC curves were techniques applied at 
every experimental run to validate results, account for statistical variance, and to quantify 
classifier performance. 
 
Steps were also taken to thoroughly understand classifier behavior. Synthetic data 
generators were constructed to validate code, as well as to validate expectations of how 
the classifier should behave. For instance, classifiers should be able to predict ‘perfect’ 
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data sets with perfect accuracy. Predictions on ‘chance’ data sets should not result in 
better or worse than 50% accuracy. Any deviations from these expectations would have 
indicated that the algorithms were behaving differently than expected, or that there were 
bugs in the code or errors in the way the algorithms were implemented. 
 
The code snippet below is an example of how ‘perfect’ data sets were simulated in Python. 
 

 1 import numpy as np 
 2 
 3 nsubjects = 1038; 
 4 nfeatures = 55; 
 5 
 6 features = np.random.rand(nsubjects,nfeatures); 
 7 labels = (np.mean(features,1) > .48).astype(int); 
 8 
 9 indPos = np.where(labels > 0)[0] 
10 indNeg = np.where(labels > 0)[0] 
11  
12 offset = 0.2 
13 features[labels > 0,:] = features[labels > 0,:] + offset 

 
 
Synthetic data sets were also used to validate feature selection implementation by 
appending ‘irrelevant’ features to perfect data sets. In this scenario, the irrelevant features 
were expected to be eliminated as not useful. 
 

9.3  Results and Technical Conclusion 
 
In total, 50 experimental runs comprising various combinations of input features and 
labeling methodologies were performed (see Table 10.3.1). Each experiment was 
repeated 70 times using jackknifed data samples. 
 
The ‘standard’ experiments comprised of using the input features listed in Section 10.1, 
i.e. the default metrics automatically generated by FreeSurfer. The labels were created by 
summing numeric values in the QA data table (items a-e also listed in Section 10.1). This 
experiment was performed 70 times for both the FHS and MIT data sets. Results for the 
FHS data set are shown in following figures. 
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Table 10.3.1. List of types of experiments performed. Each experiment was repeated 70 
times using different jackknifed datasets. 

Category Set Type Experiment
1 Default FHS Standard Standard
2 Default MIT Standard Standard
4 Relabeling FHS edit	vol #	edits	>	25	vox	==	1
5 Relabeling MIT edit	vol #	edits	>	25	vox	==	1
6 Relabeling FHS edit	vol #	edits	>	50	vox	==	1
7 Relabeling MIT edit	vol #	edits	>	50	vox	==	1
8 Relabeling FHS edit	vol #	edits	>	75	vox	==	1
9 Relabeling MIT edit	vol #	edits	>	75	vox	==	1
10 Relabeling FHS edit	vol #	edits	>	100	vox	==	1
11 Relabeling MIT edit	vol #	edits	>	100	vox	==	1
12 Relabeling FHS edit	type GM	e	>	0	==	1
13 Relabeling MIT edit	type GM	e	>	0	==	1
14 Relabeling FHS edit	type WM	e	>	0	==	1
15 Relabeling MIT edit	type WM	e	>	0	==	1
16 Relabeling FHS edit	type control	points	>	0	
17 Relabeling MIT edit	type control	points	>	0	
18 Relabeling FHS post-pre Δ	L	Hippo	vol	>	10	vox
19 Relabeling MIT post-pre Δ	L	Hippo	vol	>	10	vox
20 Relabeling FHS post-pre Δ	R	Hippo	vol	>	10	vox
21 Relabeling MIT post-pre Δ	R	Hippo	vol	>	10	vox
22 Relabeling FHS post-pre Δ	L	CerebellumWM	vol	>	.05(orig)
23 Relabeling MIT post-pre Δ	L	CerebellumWM	vol	>	.05(orig)
24 Relabeling FHS post-pre Δ	R	CerebellumWM	vol	>	.05(orig)
25 Relabeling MIT post-pre Δ	R	CerebellumWM	vol	>	.05(orig)
26 Relabeling FHS post-pre Δ	L	amygdala	>	.05(orig)
27 Relabeling MIT post-pre Δ	L	amygdala	>	.05(orig)
28 Relabeling FHS post-pre Δ	R	amygdala	>	.05(orig)
29 Relabeling MIT post-pre Δ	R	amygdala	>	.05(orig)
30 newFeats FHS Δ	Laterality
31 newFeats MIT Δ	Laterality
32 newFeats FHS contrast G/W	subcortical	contrast
33 newFeats MIT contrast G/W	subcortical	contrast
34 newFeats FHS contrast G/W	cortical	contrast
35 newFeats MIT contrast G/W	cortical	contrast
36 newFeats FHS contrast G/W	cortical	contrast	histogram
37 newFeats MIT contrast G/W	cortical	contrast	histogram
38 newFeats FHS contrast cortical	+	subcortical	histogram
39 newFeats MIT contrast cortical	+	subcortical	histogram
40 newFeats FHS WM	parcellation
41 newFeats MIT WM	parcellation
42 newFeats FHS normalized	to	ICV
43 newFeats MIT normalized	to	ICV
44 newFeats FHS preedit	QA
45 newFeats MIT preedit	QA
46 feat/label FHS WM	feats/WM	e	>	0	==1
47 feat/label MIT WM	feats/WM	e	>	0	==1
48 feat/label FHS GM	feats/GM	e	>	0	==	1
49 feat/label MIT GM	feats/GM	e	>	0	==	1
50 feat/label FHS WM	feats/WM	e	>	0	==1	seed	10
51 feat/label MIT WM	feats/WM	e	>	0	==1	seed	10



35 
 

 

 
 

Figure 10.3.1 
 

 
 

Figure 10.3.2 
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Figure 10.3.3 
 

 
Figures 10.3.1 and 10.3.2 graphed the variation of AUC as the SVM C parameter was 
varied from 0 to 5. Figure 10.3.3 graphed the averages of these AUCs. Each line 
represented a fold within the 5-fold cross validation methodology described earlier. Ideally, 
AUC would have increased towards some maximum value as it approached an optimal C 
value, then decrease as it moved away from that C. Because this pattern was not 
observed, it was concluded that the C parameter had extremely little influence on 
prediction accuracy. All subsequent experiments were defaulted to C = 1. 
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Figure 10.3.4 
 

Figure 10.3.4 graphed the variation of AUC over 70 permutations. A unimodal distribution 
was expected around some value; in this case, it was roughly around 0.55, with one outlier 
observed (around Permutation 50). 
 

 
 

Figure 10.3.5 
 
Figure 10.3.5 graphed the variation in the number of features selected across 
permutations. As evidenced here, no consistent pattern was observed, with significant 
variation across permutations. One hypothesis was that the data was too heterogeneous 
for any set of features to be consistently chosen. The selected feature sets were 
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investigated further for all experiments. At the time of this writing, the analyses were 
inconclusive. 
 

 
 

Figure 10.3.6 
 

Rates for different types of errors were also examined (Figure 10.3.6) in every experiment. 
Generally, FNDR was desired to be as low as possible because FNDR indicates the 
percentage of predicted negatives that were incorrect predictions (i.e should have been 
labeled positive). In this graph, the FNDR was 0.4. What this means for the user is that 
approximately 40% of the declared negatives were in fact positives. As explained in an 
earlier section, false negative predictions are more detrimental than false positive 
predictions. 
 
Of the 50 types of experiments performed, the most promising results came from a) 
generating labels based only on WM edits, and b) using contrast values as input features. 
The results are shown in following figures. 

 
 Category	 Set	 Type	 Experiment	

1	 Default	 FHS	 Standard	 Standard	
2	 Default	 MIT	 Standard	 Standard	
3	 Relabeling	 FHS	 edit	vol	 #	edits	>	25	vox	==	1	
4	 Relabeling	 MIT	 edit	vol	 #	edits	>	25	vox	==	1	
5	 Relabeling	 FHS	 edit	vol	 #	edits	>	50	vox	==	1	
6	 Relabeling	 MIT	 edit	vol	 #	edits	>	50	vox	==	1	
7	 Relabeling	 FHS	 edit	vol	 #	edits	>	75	vox	==	1	
8	 Relabeling	 MIT	 edit	vol	 #	edits	>	75	vox	==	1	
9	 Relabeling	 FHS	 edit	vol	 #	edits	>	100	vox	==	1	

10	 Relabeling	 MIT	 edit	vol	 #	edits	>	100	vox	==	1	
11	 Relabeling	 FHS	 edit	type	 GM	e	>	0	==	1	
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12	 Relabeling	 MIT	 edit	type	 GM	e	>	0	==	1	
13	 Relabeling	 FHS	 edit	type	 WM	e	>	0	==	1	
14	 Relabeling	 MIT	 edit	type	 WM	e	>	0	==	1	
15	 Relabeling	 FHS	 edit	type	 control	points	>	0		
16	 Relabeling	 MIT	 edit	type	 control	points	>	0		
17	 Relabeling	 FHS	 post-pre	 Δ	L	Hippo	vol	>	10	vox	
18	 Relabeling	 MIT	 post-pre	 Δ	L	Hippo	vol	>	10	vox	
19	 Relabeling	 FHS	 post-pre	 Δ	R	Hippo	vol	>	10	vox	
20	 Relabeling	 MIT	 post-pre	 Δ	R	Hippo	vol	>	10	vox	

21	 Relabeling	 FHS	 post-pre	
Δ	L	CerebellumWM	vol	>	
.05(orig)	

22	 Relabeling	 MIT	 post-pre	
Δ	L	CerebellumWM	vol	>	
.05(orig)	

23	 Relabeling	 FHS	 post-pre	
Δ	R	CerebellumWM	vol	>	
.05(orig)	

24	 Relabeling	 MIT	 post-pre	
Δ	R	CerebellumWM	vol	>	
.05(orig)	

25	 Relabeling	 FHS	 post-pre	 Δ	L	amygdala	>	.05(orig)	
26	 Relabeling	 MIT	 post-pre	 Δ	L	amygdala	>	.05(orig)	
27	 Relabeling	 FHS	 post-pre	 Δ	R	amygdala	>	.05(orig)	
28	 Relabeling	 MIT	 post-pre	 Δ	R	amygdala	>	.05(orig)	
29	 newFeats	 FHS	 	 Δ	Laterality	
30	 newFeats	 MIT	 	 Δ	Laterality	
31	 newFeats	 FHS	 contrast	 G/W	subcortical	contrast	
32	 newFeats	 MIT	 contrast	 G/W	subcortical	contrast	
33	 newFeats	 FHS	 contrast	 G/W	cortical	contrast	
34	 newFeats	 MIT	 contrast	 G/W	cortical	contrast	
35	 newFeats	 FHS	 contrast	 G/W	cortical	contrast	histogram	
36	 newFeats	 MIT	 contrast	 G/W	cortical	contrast	histogram	
37	 newFeats	 FHS	 contrast	 cortical	+	subcortical	histogram	
38	 newFeats	 MIT	 contrast	 cortical	+	subcortical	histogram	
39	 newFeats	 FHS	 	 WM	parcellation	
40	 newFeats	 MIT	 	 WM	parcellation	
41	 newFeats	 FHS	 	 normalized	to	ICV	
42	 newFeats	 MIT	 	 normalized	to	ICV	
43	 newFeats	 FHS	 	 preedit	QA	
44	 newFeats	 MIT	 	 preedit	QA	
45	 feat/label	 FHS	 	 WM	feats/WM	e	>	0	==1	
46	 feat/label	 MIT	 	 WM	feats/WM	e	>	0	==1	
47	 feat/label	 FHS	 	 GM	feats/GM	e	>	0	==	1	
48	 feat/label	 MIT	 	 GM	feats/GM	e	>	0	==	1	
49	 feat/label	 FHS	 	 WM	feats/WM	e	>	0	==1	seed	10	
50	 feat/label	 MIT	 	 WM	feats/WM	e	>	0	==1	seed	10	
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Figure 10.3.7 

 
In the above figure, the labels were created using only WM QA edit information. The AUCs 
over 70 permutations is quite respectably distributed between 0.6 and 0.7. 
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Figure 10.3.8 
However, as seen in Figure 10.3.8 above, there remains considerable variation in the 
number of features selected. 
 

 
Figure 10.3.9. Cortical and subcortical contrast values as features 

 
In Figure 10.3.9 above, the input features were cortical and subcortical contrast values. 
Again, the AUCs are respectably distributed around 0.65. 
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Figure 10.3.10 
As in the previous case, the variation in number of selected features is significant. 
 
In summary, there was significant progress made in elucidating what information best 
provide machine-learning algorithms with the data to make the desired predictions. From 
a proof of concept standpoint, this project successfully demonstrated that machine 
learning is a viable approach to performing segmentation QA. Nevertheless, 
understanding the variation in the feature selection process is the next critical step before 
the tool can be confidently deployed to users.  
 

9.4  Scientific and Technical Challenges 
 
The most significant challenges were in learning and thoroughly understanding the various 
machine learning concepts, and in developing the programming skillset in Python to 
reliably apply algorithms to data. The extent of programming was not limited to writing the 
QA tool – extensive programming was needed to write supplementary tools to perform 
meta-analysis; this portion was perhaps the least anticipated. 
 
Some of the major machine learning concepts that needed to be understood were: 

a) Supervised vs unsupervised machine learning 
a. Algorithms – support vector machines, random forests, Naïve Bayes 

b) Feature selection algorithms (e.g. recursive feature selection, Lasso) 
c) Regression vs classification 
d) Validation methodologies – bootstrapping, jackknifing, cross validation 

 
Additional critical components to the project were in evaluating results, making inferences, 
and adjusting experiments and/or devising new experiments based on drawn conclusions. 
These processes involved high levels of critical thinking, which added to the scientific and 
technical challenges. For instance, considerable time was spent understanding how scikit 
tools performed feature selection, computed scores, and assigned classes ‘under the 
hood’. Discussion articles, forums, and documentations were researched to gain better 
understanding, but in many cases, there were no clear and concise conclusions on how 
some of the tools functioned. Therefore, making the right assumptions and decisions 
based on what was understood was also a technical challenge. 

10 PROJECT PLAN 

 

10.1 Statement of work 
 
The purpose of the project was to develop a quantitative method to FreeSurfer 
segmentation quality assessment. The approach was to implement existing machine 
learning algorithms and refine the features used to make the classification. The goal was 
a QA tool that indicated to users whether manual editing of a FreeSurfer segmentation 
was needed. The algorithms and software tools available at http://www.scikit-
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learn.org/stable were tested and built upon to QA segmented volumes. The algorithm in 
particular that was used was support vector machines. 
 
Training data comprised approximately 3700 pre-inspected segmented volumes 
containing editing information provided by manual user QA. 
 

10.2  Schedule 

10.2.1 Work Breakdown Structure 
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WBS Task Name Outcome 
WBS 

Predecessor
s 

1 Phase I: Test existing ML algorithms Select and test algorithm(s) best suited for 
making classification  

1.1 Python & Algorithms  
Familiarize self with Python language, 
machine learning concepts 

 

1.2 Gather training data Set of features that will be used to train ML 
algorithm 1.1 

1.3 Interfacing data into Python Modify algorithm so that data can be used 
as input 1.2 

1.4 Apply algorithms Test algorithms 1.1, 1.2, 1.3 
1.4.1     Balance dataset Removes weighting of classes  

1.4.2     Implement jackknifing Accounts for variance in prediction 
accuracy  

1.4.3     Implement cross-validation Model validation  
1.4.4     Implement feature selection Removes irrelevant features  
1.4.5     Implement C optimization Optimize SVM parameters  

1.5 Evaluate results Assess results of tested algorithm 1.1, 1.2, 1.3, 
1.4 

1.5.1     Implement ROC analysis Measure classifier performance  
1.5.2     FPR, FNR, FPDR, FNDR, TPR, TNR Measure error rates 1.5.1 

1.5.3     Write script to evaluate selected 
features Validate feature selection  

1.5.4      Write synthetic data generator Validate algorithm behavior expectations, 
bugs in code  

1.6 Conclusions Discuss results and plan next course of 
action  

1.6.1 Critical Milestone: Repeat Task 1 or 
Proceed to Task 2   

2 Phase II: Develop New Features, Test 
relabeling 

Develop features that better predict output 
class; relabel to analyze which types of 
predictions are best 

1 

2.1 Obtain post edit data Test post-pre differences as features  

2.2 Obtain contrast data Test contrast information as features  
2.3 Obtain WM parcellation data Test parcellation metrics as features  
2.4 Laterality differences Test laterality differences as features  
2.5 Normalized to ICV Test normalized values to ICV as features  
2.6 Relabeling tests Test better ways to form labels  
2.7 SNR Test SNR as features  
2.8 Mask/ICV ratios Test mask/ICV ratio as features  
2.9 Conclusions  2.1, 2.2 

2.10 Critical milestone: repeat Task 2 or 
proceed to Task 3   

3 Phase III: Create tool that guides user 
to problematic locations 

Develop tool that tells user where to edit in 
segmentation volume  

3.1      Analyze Phase II results Select metrics most useful to achieve goal 2 
3.2      Develop “scoring” scheme Express metric at each vertex 2 
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3.3      Write script  2, 3.1, 3.2 
3.3.1            Review MATLAB   
3.3.2            Review shell scripting   
3.3.3            Write script   
4 Testing and Validation Refer to 1.4.2  
 Jackknifing   
 Cross validation   
 Feature selection   
5 Project Conclusion   
5.1       Review work   
5.2       Finalize project Prepare for presentation  
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10.2.2  Gantt chart 
 

 
 
 

10.2.3 Project Planning Assessment 
 
The project moved slower than scheduled, partly due to unanticipated additional tasks and 
partly due to technical challenges that delayed scheduled start and end times. In addition, 
the candidate did not most effectively influence and advocate for needs concerning 
technical guidance and overall project vision. Towards the second half of the project, a 
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better rhythm was established that pushed progress at a faster rate, but nevertheless the 
previous delays as well as lingering technical complexities remained troublesome. Delays 
were dealt with by expediting some tasks, but in most cases, deadlines were merely 
pushed back. Looking back, this was not the most efficient approach. 
 
A revised and more accurate WBS is shown below 
 

 
 

Some tasks that were not anticipated were implementing ROC analysis, implementing 
cross-validation, feature selection, as well as writing additional scripts to analyze the 
feature selection process. 
 
Bugs in the code were occasionally problematic, sometimes delaying the completion of 
tasks by days or weeks. 
 

10.3  Budget and Costs Assessment 
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Material costs – N/A – all data, software, and tools were freely available and/or already 
acquired 
 
Labor – N/A – this is taken on as an independent unpaid project 
 

10.4  Risk Plan and Mitigation Assessment 
 
The biggest risk was in failing to identify a machine-learning algorithm that could 
sufficiently make the desired classification. Reaching this conclusion depended heavily on 
whether the team had confidently determined that all reasonable features and methods of 
relabeling were tested and assessed. 
 
Weekly meetings were scheduled to evaluate progress and results. In these meetings, the 
results from the validation steps as well as prediction results were evaluated to determine 
the best course of action. 
 
The most important milestone was establishing whether new features needed to be 
created, and if so, what types.  A second critical milestone was establishing whether 
algorithms should be explored, and if so, which ones. These milestones were necessary 
for the project team to conclude whether machine learning was a viable approach to 
performing segmentation QA. Deadlines for these milestones were scheduled in the WBS. 
 
As the project progressed, the focus shifted towards the first milestone, and so other 
algorithms were not explored. 
 
Task 3 in the WBS carried the least importance, so whenever additional time was needed, 
it was taken from Task 3.  
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11 LEADERSHIP 

11.1  Leadership Capabilities Assessment 
 
Because this project was sought out and requested independently, it was my sole 
responsibility to drive the project. I needed to effectively coordinate with the project team 
in order to leverage the support I needed to successfully complete the project. 
 
The specific capabilities and skills that were identified as development opportunities were 
the following: 
 
Realizing the Vision 
In the past, I had been more comfortable with relying on others to provide the driving force 
behind a project. This was in part a reflection of weakness in translating abstract ideas 
into implementations. One major source of delay in completing my work assignments was 
in not knowing how or where to obtain the help I needed, whether technical or instructional. 
For team projects, I thus often depended on others to formulate solutions. Since I was the 
lead on this project, an excellent opportunity was presented to develop skills in this area. 
Furthermore, because substantial new technical knowledge is involved, it was critical that 
I took an active approach. 
 
Decision Making 
I was typically more comfortable with supplying facts and relying on others to make 
decisions. Thus, a leadership challenge was to improve decision-making capabilities. A 
major component to this project was gauging success or failure, making technical 
decisions, and decisions on when and whether alternative action is needed. 
 
Interpersonal skills/Communicating and Advocacy 
Effectively communicating opinions, confusion, and needs was often a weakness. I would 
occasionally express understanding of a topic when in actuality, additional clarification 
was needed. In this context, the leadership skill that needed improvement was in 
improving inquisitiveness and interpersonal skills so that others could understand when 
more information was needed. 
  
Each member of the project team held expertise in different areas, so there was an 
excellent opportunity to practice effective communication. One point to mention was the 
theme of “influence without authority” - many of the individuals involved shared the same 
‘rank’ within the organization, so an important skill was in being able to leverage members 
to take action. 
 
My initial and revised assessments of leadership capabilities are shown in the spider chart 
below. 
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The lower revised scores should not be interpreted as regression, but as improved 
awareness of which skills needed attention, for example vision, advocacy, and courage. 
 
For the majority of the project, I worked remotely which was not a preferred working style. 
E-mail was the primary mode of communication, which became challenging in terms of 
effectively communicating thoughts that were better expressed verbally, and from a 
logistics perspective, e.g., group members have to sacrifice time in order to read and 
respond to emails. This challenge became closely tied with advocacy – if I was not 
receiving the information I needed, it was my duty to take proactive steps to remedy the 
situation. For example, I adapted my communication style to be more assertive by 
following up regularly through email. 
 
Courage was a characteristic that became a central area of improvement. More 
specifically, ‘try’ and ‘tell’ courage. ‘Try’ courage is the courage of initiative and action, 
making first attempts in spite of any doubts. For a large portion of the project, I was hesitant 
to implement ideas on my own because I assumed my lack of technical knowledge would 
be too major of a barrier. I preferred instead to defer to team members. This was highly 
ineffective due to competing priorities and time constraints. Moreover, as the lead on the 
project, it was ultimately my responsibility to own the task. Once this realization was made, 
I attempted more and more assignments on my own, for example, a) rewriting code to 
implement other algorithms, and b) writing code to analyze the feature selection process. 
This proved to be an invaluable leadership characteristic because it allowed me to drive 
the project at a faster rate. Nevertheless, this characteristic remains an active area of 
improvement. 
 
‘Tell’ courage is the courage of voice, expressing doubts, differing opinions, and concerns. 
My personal vision, ideas, and priorities occasionally deviated from my team’s towards the 
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end of the project. I learned to be more assertive in putting forth these ideas for discussion, 
and not always defaulting to the original plan. By having these discussions, I was able to 
better understand the overall vision and technical approach. 
 
At one point in time, the project was in a critical state where corrective action was needed 
to avoid project failure. Thus, I strove to improve communication style and to effect ‘try’ 
and ‘tell’ courage. One way communication was improved was through writing up meeting 
minutes to ensure that I understood key takeaways after each meeting. I also implemented 
a time tracker to gauge which areas of the project I needed to spend additional time. From 
the standpoint of ‘tell’ courage, I became more assertive in expressing thoughts or needs. 
These actions enabled me to put the project on a better path to success. 
 
To summarize, several key lessons were learned: 

1) Influential leaders need to be able to make important decisions even without the 
necessary technical knowledge. In these situations, it is important that they 
leverage those with the knowledge to provide the answers they need 

2) Proactivity vs reactivity (making things happen vs letting things happen) is a 
function of effective communication, assertiveness, and ‘try’ and ‘tell’ courage 

3) Realizing the vision is not solely dependent on technical knowledge. Rather, it is 
equally important that the leader is capable of assessing outcomes and 
implications of tasks at a macroscale level. One mistake I made during this project 
was focusing too much on individual assignments and not stepping back to 
evaluate how smaller pieces fit together in the big picture. Much of the ability to do 
so requires strong inquiry – asking the right questions to stimulate forward thinking 
in terms of next steps, and to align goals and priorities. 

11.2  Team staffing and organization 
 
The involved Martinos Center members are Douglas Greve, Ender Konukoglu, and Satrajit 
Ghosh. 
 
Douglas Greve was my organization sponser. He is a Martinos Center faculty member 
and an Assistant Professor in Radiology at Harvard Medical School. He was the primary 
point person for the project. The idea of developing a FreeSurfer QA tool had been on the 
organization’s “wish list” for a long time, but none had been able to fully commit to its 
development. Doug’s role was to provide expertise on FreeSurfer, machine learning, and 
overall project guidance. 
 
Ender Konukoglu is an Instructor in Radiology at Harvard Medical School, and was 
regularly involved with the project. He lent his expertise on machine learning and was an 
incredible resource in driving the project’s vision. 
 
Satrajit Ghosh is a Principal Research Scientist at MIT and Assistant Professor in Otology 
and Laryngology at Harvard Medical School. He supplied us with additional datasets. 
 
The final members of the project team are Elise Sargent, Gordon Mentor, and Deniz 
Erdogmus, Faculty Advisor. Elise’s role was to provide leadership guidance and 
mentorship; she was incredible in both regards.  
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Deniz Erdogmus is an Assistant Professor in Electrical and Computer Engineering at 
Northeastern University. His added expertise on machine learning was invaluable to the 
project. 

11.2.1  Project Team  
 
Gordon Candidate: Matthew Goh 
ISA: Doug Greve 
Gordon Mentor: Elise Sargent 
Faculty Advisor: Deniz Erdogmus 
Others: Satrajit Gosh, Ender Konukoglu 

12 SUMMARY 

 
Completing this Challenge Project was an incredible experience. Though challenging from 
both technical and leadership standpoints, its value to my career cannot be overstated. I 
now have skills in machine learning and Python programming that I otherwise would not 
have developed. I also have a newfound interest in machine learning—prior to this project, 
it was not an area I had considered as a career path, but is now something I find extremely 
fascinating. Through this project, I also furthered my knowledge of bioimage signal 
processing, which is the very essence of my major and concentration. 
 
This Challenge Project was also invaluable to becoming a better leader, worker, follower, 
and student. Working with differing work styles, personalities, and expectations pushed 
me to not only face my flaws, but also to be held accountable for them. Moving forward, I 
believe I am in a much stronger position to engage as an effective employee, leader, and 
follower. 
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